Skip Content
You are currently on the new version of our website. Access the old version .

Thermo

Thermo is an international, peer-reviewed, open access journal on all aspects of thermal sciences, including key features on thermodynamics, statistical mechanics, kinetic theory and satellite areas, published quarterly online by MDPI.

Quartile Ranking JCR - Q2 (Thermodynamics)

All Articles (190)

Photovoltaic–thermal (PVT) collectors often experience limited heat extraction under laminar cooling conditions, and the influence of controlled flow pulsation on full-scale PVT performance has not been clearly established. This study experimentally investigates a water-cooled PVT system operated under pulsating flow using an indoor solar simulator to quantify its thermal and electrical response. Flow pulsations were generated using a solenoid valve at frequencies of 0.25, 0.5, 1, and 2 Hz across inlet flow rates of 1–4 L/min, with average irradiance maintained between 700 and 800 W/m2. System performance was benchmarked against uncooled and continuous-flow reference cases. Pulsating operation reduced the PVT surface temperature and produced a clear enhancement in thermal performance relative to continuous flow, while electrical efficiency exhibited a smaller but consistent improvement that followed the same thermal trend. A pulsation frequency of 0.5 Hz yielded the most favorable results, achieving thermal efficiencies exceeding 50% at higher flow rates without any measurable increase in average pressure drop. Electrical efficiency stabilized at approximately 9.82%, slightly higher than that obtained under continuous-flow operation. The results indicate that low-frequency pulsating flow can significantly improve thermal energy extraction in PVT systems under controlled conditions, with modest associated electrical gains, and provide a basis for further investigation of flow-modulation strategies for thermally driven PVT applications.

3 February 2026

Comparison of spectra from various halogen light sources with the standard solar spectrum [32].

Multi-Chiller Plant Under Demand Uncertainties: Predictive Versus Planned Approaches

  • Manuel G. Satué,
  • Alfredo P. Vega-Leal and
  • Manuel R. Arahal
  • + 1 author

Recently, different techniques have been proposed for the scheduling and loading problems in cooling plants with chillers in a parallel configuration. Two broad groups can be considered: the online control-based group and the offline optimization-based group. The first group is exemplified by Model Predictive Control, where the selection of control moves provides a solution to both scheduling and loading. The second group includes Optimal Chiller Loading and Optimal Chiller Sequencing algorithms. They usually derive operating plans with some lead time in a batch-like fashion for long horizons. Both groups use forecasts of important factors such as the cooling demand and ambient conditions; hence, they have to deal with inaccuracies in the forecasts. In this paper, a comparison among these two groups is made considering demand uncertainties. The severity of the uncertainty is shown to play a role in the results as well as the controller tuning in the case of the predictive approach. The results are favorable to OCS with respect to overall consumption (up to 15%) but uses more on/off changes in the chiller’s operation (double in some cases).

3 February 2026

Diagram of a cooling plant with several chillers serving a building. A detailed view of the low level control loops for the unit #1 is shown.

Thermal Analysis-Based Elucidation of the Phase Behavior in the HBTA:TOPO Binary System

  • Stanislava Ivanova,
  • Charles F. Croft and
  • Tony G. Spassov
  • + 4 authors

The development of deep eutectic solvents (DESs) is a key issue for the realization of green and efficient metal extraction processes. The present study aims to experimentally construct the phase diagram of the binary system consisting of tri-n-octylphosphine oxide (TOPO) and 4,4,4-trifluoro-1-phenyl-1,3-butanedione (HBTA) and, thus, determine its eutectic composition for the solvent extraction of Li+. Differential scanning calorimetry was used to characterize the phase transitions (melting temperatures and enthalpies) over the entire composition range of the binary mixture. Its eutectic composition was established at HBTA:TOPO mass ratio of 60:40. For further validation of the eutectic composition from the experimentally measured thermal effects for melting of different HBTA:TOPO mass ratios, a Tammann diagram was also constructed. Only mixtures with HBTA:TOPO mass ratios of 70:30, 60:40 (eutectic composition), and 50:50 were liquids at 30 °C, while at room temperature of 25 °C, the 70:30 mixture formed crystals. All three mixtures, which were liquids at 30 °C, were found to extract Li+ effectively. However, at a room temperature of 25 °C, only the eutectic mixture (60:40 mass ratio) extracted Li+ effectively, while the mixture with HBTA:TOPO mass ratio of 50:50 formed crystals when mechanically agitated and, therefore, was deemed as unsuitable for Li+ extraction.

25 January 2026

DSC curves for different HBTA–TOPO compositions (2 K/min heating and cooling rate) in heating (a) and cooling (b) modes ((a), inset: first derivative of the eutectic DSC peak).

A firewood stove’s combustion chamber can withstand temperatures of 1500 °C. To prevent the deterioration of a firewood stove due to excessive heat, it is necessary to use thermal insulation materials that stop heat transfer to the walls. These materials must be economical and durable. This work examines the materials used in the construction of combustion chambers of firewood stoves in southern Mexico and Central America. This field study collects information and samples of materials used in the manufacture of firewood stoves. Heat transfer experiments are conducted, and the thermal properties of each material are analyzed. As a result, methodology and information is provided for the manufacture of future plancha-type firewood stoves used in the study area, such as pine wood (pinus chiapensis) which is mainly used as casing for firewood stoves in coniferous forest areas; in addition, the use of wood ash as thermal insulation material is proposed since it does not present direct costs and has a thermal conductivity between 0.10 and 0.20 W/m°C and a melting point greater than 1500 °C. The next layer proposed is hollow brick, a high-temperature-resistant material that can be used as support due to its mechanical strength and low thermal conductivity of 0.6 W/m°C. Finally, the use of calcium hydroxide as a coating material is proposed, applied in the form of a paste or paint to detail the imperfections of the combustion chamber construction as it resists temperatures above 1000 °C.

21 January 2026

Traditional 3SF in Latin American countries. (a) With a concrete base, (b) with a wood base, (c) with a metal base.

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Thermo - ISSN 2673-7264